SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT ANDTECHNOLOGY					
DEPARTMENT OF MECHANICAL ENGINEERING					
Class Test - II		Session- July-December, 2022	Month- Feb, 2023		
Semester $3^{\text {rd }}$		Subject- Engineering Thermodynamics			
Code - B000314(037)		Time Allowed: 2 Hours	Max Marks: 40		
Note: - Part A(MCQ) of sections I and 2 is compulsory, from other parts B, C and D of sections 1 and 2, attempt any two parts. Ignore the columns of Level of Bloom's taxonomy and CO.					
$\begin{aligned} & \text { Q. } \\ & \text { No } \end{aligned}$	Questions		Marks	Levels of Bloom's taxonomy	CO
Section - 1					
1.A	Explain the term Dryness fraction and Wetness Fraction. What is the significance of Dryness fraction?		4	R	5
1.B	A boiler working at a pressure of 15 bar (gauge) is supplied with water at $80^{\circ} \mathrm{C}$. The ambient pressure is 750 mm of Hg . The quality of steam at outlet from the boiler is 80% dry. Steam from boiler passes through superheater to get $80^{\circ} \mathrm{C}$ degree of superheat. For an evaporation of $200 \mathrm{~kg} / \mathrm{hr}$, calculate the rate of heat transfer - (i) in boiler (ii) in superheater in kJ / s.		8	A	5
1.C	A mass of wet steam at temperature $165^{\circ} \mathrm{C}$ is expanded at constant quality 0.8 to pressure 3 bar. It is then heated at constant pressure to a degree of superheat of $66.5^{\circ} \mathrm{C}$. Find the enthalpy and entropy changes during expansion and during heating. Draw the T-s and h-s diagrams.		8	A	5
1.D	5 kg of steam at 10 bar 0.9 dry is heated at constant temperature and the final pressure of steam at 4 bar. Find the condition of steam after heating, change in internal energy, heat transfer and work done during the process.		8	A	5

Section -2

1. Consider the following statements regarding the throttling process of wet steam:
2. The steam pressure and temperature decrease but enthalpy remains constant.
3. The steam pressure decreases; the temperature increases but enthalpy remains constant.
4. The entropy, specific volume, and dryness fraction increase.
5. The entropy increases but the volume and dryness fraction decrease.
Which of these statements are correct?
2.A
(a) 1 and 4
(b) 2 and 3
(c) 1 and 3
(d) 2 and 4
6. Which one of the following represents the condensation of a mixture of saturated liquid and saturated vapor on the enthalpy-entropy diagram?
(a) A horizontal line
(b) An inclined line of constant slope
(c) A vertical line
(d) A curved line

Steam initially at $1.5 \mathrm{MPa}, 300^{\circ} \mathrm{C}$ expands reversibly and
2.B adiabatically in a steam turbine to 40C. Determine ideal work output of the turbine per kg of steam.
A piston cylinder arrangement has 0.2 kg of steam at 10 bar and $300^{\circ} \mathrm{C}$. The steam expands up-to a pressure of 1 bar till its volume becomes six times according to the polytrophic law $p v^{n}=$ constant. Find
2.C
(i) Index " n "
(ii) Work done
(iii) Change in internal energy.
(iv) Heat transfer.

Steam at a pressure of 8 bar and 0.9 dry is expanded
2.D hyperbolically in a cylinder up-to 1 bar pressure. Determine the work-done and heat transfer during the process. Assume $C_{p}=$ $2.0 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY						
DEPARTMENT OF MECHANICAL ENGINEERING						
Class Test - II		Session- July to Dec.	Month - Feb 2023			
Sem- $3^{\text {rd }}$		Subject - MMM				
Code - B000311(037)		Time Allowed: 2 hr	Max Marks: 40			
Note: - 1. Students are Required to focus on question and marks columns only. 2. In Unit I \& II, Question A is compulsory and attempt any two from B, C \& D.						
Q. No		Questions		Marks	Levels of Bloom's taxonomy	CO
	Unit-I					
A	Write down the Bernoulli's equation for incompressible flow.			4	Remembering	CO3
B	Explain the construction and working of Hot wire anemometer. Also write its advantages and disadvantages.			8	understanding	CO3
C	Explain the principle, construction and working of venturi meter with a suitable diagram.			8	Understanding	CO 3
D	Write short notes on (any two)- (1) Magnetic Flow meter (2) Ultra sonic flow meter (3) Significance of flow measurement			8	Understanding	CO3

Unit-II				
A	What do you mean by Vibration measurement? Why is it important?	4	Understanding	CO3
B	Explain the construction and working of Seismic instruments for vibration measure with neat sketch.	8	Understanding	CO 3
C	Explain the principle and operation of multi channel Data acquisition system with a suitable diagram.	8	Understanding	CO3
D	Write short notes on (any two)- (1) Nozzle (2) Orifice meter (3) DAS	8	Understanding	CO3

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND
TECHNOLOGY, Raipur

DEPARTMENT OF MECHANICAL ENGINEERING		
Class Test: II	Session: July-December, 2022	Month: February, 2023
Semester 3rd	Subject: Engineering Mechanics	
Code: B000313(037)	Time Allowed: 2 Hours	Max Marks: 40
Note: - Part A of Questions 1 and 2 is compulsory, from other parts B, C and D of Questions 1 and 2,		

Ignore the columns of Level of Bloom's taxonomy and CO.
,
Questions
Levels of Bloom's
Q.
taxonomy
Question - 1

Question - 2

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY
DEPARTMENT OF MECHANICAL ENGINEERING

Class Test - II	Session- 2022-23	Month- February	
Sem- 3	rd	Subject- Materials Science	
Code - B037315(037)	Time Allowed: 2hours	Max Marks: 40	
Note: - Note: - Attempt all question. Parts (a) are compulsory of each question. Solve any two parts from (b), (c) and (d) of each			

Note: - Note: - Attempt all question. Parts (a) are compulsory of each question. Solve any two parts from (b), (c) and (d) of each question.

| Q.
 No | Questions | Marks | Levels of
 Bloom's
 taxonomy | CO |
| :---: | :--- | :---: | :---: | :---: | :---: |
| Part-A | $\mathbf{4}$ | Understanding | CO1 | |
| 1.A | What do you mean by Nucleation? | $\mathbf{8}$ | Understanding | CO1 |
| 1.B | Explain homogeneous and heterogeneous nucleation. | $\mathbf{8}$ | Understanding | CO1 |
| 1.C | Discuss the metal ingot structure having dendritic gains with a neat sketch. | | Understanding | CO2 |
| 1.D | Draw and explain iron-iron carbide phase diagram and show its important
 points. | $\mathbf{8}$ | | |

2.A	What is Lever rule?	$\mathbf{4}$	Understanding	CO1
2.B	Explain the following: (a) Gibb's phase rule (b) Hume Rothery's rule	$\mathbf{8}$		
2.C	Explain T-T-T curve with neat sketch. What information is made ávailable by this curve that was lacking in Fe-C diagram?	$\mathbf{8}$	CO1	
	Write short notes on: a) Eutectic reaction b) Eutectoid reaction c) Peritectic reaction	$\mathbf{8}$	Understanding	
2.D		CO1		

Note: - Part A is compulsory and attempt any two parts from B,C\&D.				
Q.N	Questions	Marks	Bloom's taxonomy	COs
Unit IV				
A.	From the following table, estimate the number of students who obtained marks between 40 and 45 .	[4]	Applying	CO4
B.	Use Stirling's and Bessels formula to find $y(25)$ given, $\mathrm{y} 20=2854, \mathrm{y} 24=3162, \mathrm{y} 28=3544, \mathrm{y} 32=3992 .$	[8]	Applying	CO4
C.	Using Newton's divide difference formula, evaluate $f(9)$ \& $\mathrm{f}(15)$, given	[8]	Applying	CO4
D.	Find $f(x)$ using Lagrange's interpolation formula, as a polynomial of x if $\begin{array}{lcccr} x: & 0 & 1 & 2 & 5 \\ \mathrm{f}(\mathrm{x}): & 2 & 3 & 12 & 147 . \\ \text { Hence find } \mathrm{f}(3) . \\ \end{array}$	[8]	Applying	CO4
Unit V				
A.	Using Taylor's series, find the solution of the differential equation, $\mathrm{xy}^{\prime}=\mathrm{x}-\mathrm{y}, \mathrm{y}(2)=2$ at $\mathrm{x}=2.1$ correct to five decimal places.	[4]	Applying	CO5
B.	Solve the following differential equation by modified Euler's method $\frac{\mathrm{dy}}{\mathrm{dx}}=\log (\mathrm{x}+\mathrm{y}), y(0)=1$ at $x=0.2$ and $x=0.5$ with $h=0.2$.	[8]	Applying	CO5
C.	Apply Runge-Kutta method of fourth order to approximate the value of y at $x=0.2$ correct to 4 decimal places in steps of	[8]	Applying	

	0.1 if $\frac{d y}{d y}$ $d x$ $y^{2}+x, y(0)=1$.		COS	
D.	Use milne's predictor corrector method and find $y(0.4)$ given that $\frac{d y}{d x}=\frac{1}{2}\left(1+x^{2}\right) y^{2}$ and $y(0)=1, y(0.1)=1.06, y(0.2)=$	[8]	Applying	COS
$1.12, y(0.3)=1.21$.				

