	D	TECHNOLOGY EPARTMENT OF MECHANICAL EN	GINEERI	ING		
(Class Test – II	Session- July-December, 2022		Month	- Feb, 2023	
	Semester 3 rd	Subject- Engineering Thermod	ynamics			
Cod	e – B000314(037)	Time Allowed: 2 Hours	1	Max	Marks: 40	
any tw	vo parts.	ons 1 and 2 is compulsory, from other par of Bloom's taxonomy and CO.	rts B, C an	d D of sect	tions 1 and 2, a	attem
Q. No		Questions		Marks	Levels of Bloom's taxonomy	CC
		Section – 1				
1.A		Dryness fraction and Wetness Fract icance of Dryness fraction?	ion.	4	R	5
1.B	with water at 80° The quality of ste Steam from boile	at a pressure of 15 bar (gauge) is su C. The ambient pressure is 750 mm cam at outlet from the boiler is 80 r passes through superheater to go eat. For an evaporation of 200 of heat transfer - (ii) in superheater in kJ/s.	2 of Hg. 9% dry. 2t 80°C	8	Α	5
1.C	constant quality constant pressure enthalpy and entr	eam at temperature 165°C is expan 0.8 to pressure 3 bar. It is then her to a degree of superheat of 66.5°C. F opy changes during expansion and T–s and h–s diagrams.	ated at ind the	8	A	5
1.D	temperature and th condition of steam	t 10 bar 0.9 dry is heated at co ne final pressure of steam at 4 bar. F n after heating, change in internal work done during the process.	ind the	8	A	5

	Section – 2			
2.A	 Consider the following statements regarding the throttling process of wet steam: The steam pressure and temperature decrease but enthalpy remains constant. The steam pressure decreases; the temperature increases but enthalpy remains constant. The entropy, specific volume, and dryness fraction increase. The entropy increases but the volume and dryness fraction decrease. Which of these statements are correct? and 4 and 3 and 4 Which one of the following represents the condensation of a mixture of saturated liquid and saturated vapor on the enthalpy-entropy diagram? A horizontal line An inclined line of constant slope a vertical line 	4	R	5
2.B	(d) A curved line Steam initially at 1.5 MPa, 300°C expands reversibly and adiabatically in a steam turbine to 40C. Determine ideal work output of the turbine per kg of steam.	8	U	5
2.C	A piston cylinder arrangement has 0.2 kg of steam at 10 bar and 300°C. The steam expands up-to a pressure of 1 bar till its volume becomes six times according to the polytropic law pv^n =constant. Find (i) Index "n" (ii) Work done (iii) Change in internal energy. (iv) Heat transfer.	8	R	5
2.D	Steam at a pressure of 8 bar and 0.9 dry is expanded hyperbolically in a cylinder up-to 1 bar pressure. Determine the work-done and heat transfer during the process. Assume $C_p =$ 2.0 kJ/kg K	8	R	5

2

07/02/03/MEIM/5-J-

	SHRI SHANKARA	CHARYA INSTITUTE OF PROFESSIONAL MANA	GEME	ENT AND	TECHNOLOGY	l and
		DEPARTMENT OF MECHANICAL ENGINE	ERINO	;		
Class	Test – II	Session- July to Dec. 2022	Mont	h – Feb 20	023	
Sem-	3 rd	Subject – MMM				
Code -	– B000311(037)	Time Allowed: 2 hrs	Max I	Marks: 40		
Note: -		nired to focus on question and marks columns only. Lestion A is compulsory and attempt any two from B,	C & D			
Q. No		Questions		Marks	Levels of Bloom's taxonomy	СО
		Unit – I				
A	Write down the E	Bernoulli's equation for incompressible flow.		4 .	Remembering	CO3
В		ruction and working of Hot wire anemometer. A ges and disadvantages.	Also	8	understanding	CO3
С	Explain the prin with a suitable di	ciple, construction and working of venturi m agram.	eter	8	Understanding	CO3
D	Write short notes (1) Magnetic Flov (2) Ultra sonic flo (3) Significance o	w meter		8	Understanding	CO3

	Unit – II			
А	What do you mean by Vibration measurement? Why is it important?	4	Understanding	CO3
В	Explain the construction and working of Seismic instruments for vibration measure with neat sketch.	8	Understanding	CO3
С	Explain the principle and operation of multi channel Data acquisition system with a suitable diagram.	8	Understanding	CO3
D	Write short notes on (any two)- (1) Nozzle (2) Orifice meter (3) DAS	8	Understanding	CO3

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY, Raipur

SE	IRI SHANKAK	TECHNOLOGY, Kaipur			
	Ĩ	DEDADTMENT OF MECHANICAL ENGINEER	LING	- 2022	-
Cla	ss Test: II	Session: July-December, 2022	Aonth: Fe	bruary, 2023	
	mester 3rd	Subject: Engineering Mechanics	N	Acarlas 10	
		Time Allowed: 2 Hours	Max Marks: 40		
Note: -	Part A of Quest	tions 1 and 2 is compulsory, from other parts B, C	ana D oj	Questions 1 a	<i>nu _</i> ,
	the true to the the				
Ignore Q. No	the columns of I	Level of Bloom's taxonomy and CO. Questions	Marks	Levels of Bloom's taxonomy	СО
110		Question – 1			
1.A	Analyze the di mass moment o	fference between area moment of inertia and f inertia.	4	Understand	3
1.B	Derive the form	nula of product of inertia of right angled triangle eentroidal axes.	8	Apply	3
1.C	Determine the respect to the D	moment of inertia of the shaded area shown with horizontal and vertical centroidal axis.	8	Apply	3
1.0	triangle abo	rmula for area moment of inertia of (i) right angl ut its centroidal x and y axis. (ii) semicircle abo l x and y axis (iii) rectangle about its centroidal v) circle about its centroidal x and y axis.	ed ut 8 x	Remember	3
			9.	P.T.	0

	Question – 2			1
2.A	Analyze the importance of D'alembert's principle in dynamics.	4	Analyze	5
2.B 2.C	Two blocks A and B are held on an inclined plane 5m apart as shown in following figure. The coefficients of friction between block A and B and the inclined plane are 0.2 and 0.1 respectively. If the blocks begin to slide down the plane simultaneously, calculate the time and distance travelled by each block before collision.	8	Apply	5
	Three spherical balls of mass 2 kg, 6 kg and 12 kg are moving in			
	the same direction with velocities 12 m/s, 4 m/s and 2 m/s respectively. If the ball of mass 2 kg impinges with the ball of mass 6 kg which in turn impinges with the ball of mass 12 kg, prove that the balls of mass 2 kg and 6 kg will be brought to rest by the impacts. Assume the balls to be perfectly elastic.			
	$ \begin{array}{c} 4m/s \\ 4m/s \\ \hline m_{A} \\ \hline (2kg) \\ \hline m_{B} \\ \hline (6kg) \\ \hline m_{C} \\ \hline (12kg) \\ \hline m_{C} \\ \hline \hline m_{C} \\$	8	Apply	5
2.D	A gun of mass 3000 kg fires horizontally a shell of mass 50 kg with a velocity of 3000 m/s. What is the velocity with which the gun will recoil? Also find the uniform force required to stop the gun in 0.6m. In how much time will it stop?	8	Apply	5

08/02/28/MECH/EM/Sit

/		4		·			
Ľ	S	SHRI SHANKARACH	ARYA INSTITUTE OF PROFESSIONAL MANAGEMI		ECHNOLOGY		
			DEPARTMENT OF MECHANICAL ENGINEERI		E 1		
	Cl	ass Test – II	Session- 2022-23	Month	- February		
Γ		Sem- 3 rd	Subject- Materials Science				
Γ	Code	Code - B037315(037) Time Allowed: 2hours Max Marks: 40					
	Note: -] question		stion. Parts (a) are compulsory of each question. Solve any tw	wo parts from	n (b), (c) and (d)	of each	
	Q. No		Questions	Marks	Levels of Bloom's taxonomy	СО	
			Part-A				
ſ	1.A	What do you mean b	by Nucleation?	4	Understanding	CO1	
	1.B	Explain homogeneo	us and heterogeneous nucleation.	8	Understanding	CO1	
	1.C	Discuss the metal in	got structure having dendritic gains with a neat sketch.	8	Understanding	CO1	
	1.D	Draw and explain in points.	on-iron carbide phase diagram and show its important	8	Understanding	CO2	

	Part-B			
2.A	What is Lever rule?	4	Understanding	CO1
2.B	Explain the following: (a) Gibb's phase rule (b) Hume Rothery's rule	8	Understanding	CO1
2.C	Explain T-T-T curve with neat sketch. What information is made available by this curve that was lacking in Fe-C diagram?	8	Understanding	CO1
2.D	 Write short notes on: a) Eutectic reaction b) Eutectoid reaction c) Peritectic reaction 	8	Understanding	CO1

SSIPMT	Sem-3 rd Branch-Mechanical Subject-Mathematics III Code-B000311(014			
	Time Allowed: 2 hrs Max Marks: 40		ха . Х	
Note: - Q.N	Part A is compulsory and attempt any two parts from B, C & D. Questions	Marks	Levels of Bloom's taxonomy	COs
	Unit IV			
Α.	From the following table, estimate the number of studentswho obtained marks between 40 and 45.Marks:30-4040-5050-6060-7070-80No. of students:3142513531	[4]	Applying	CO ²
B.	Use Stirling's and Bessels formula to find y(25) given, y20 = 2854, y24 = 3162, y28 = 3544, y32 = 3992.	[8]	Applying	CO4
C.	Using Newton's divide difference formula, evaluate $f(9)$ & $f(15)$, given x : 4 5 7 10 11 13 f(x) : 48 100 294 900 1210 2028	[8]	Applying	CO4
D.	Find $f(x)$ using Lagrange's interpolation formula, as a polynomial of x if x : 0 1 2 5 f(x) : 2 3 12 147. Hence find f (3).	[8]	Applying	СС
	Unit V			•
Α.	Using Taylor's series, find the solution of the differential equation, $xy' = x - y$, $y(2) = 2$ at $x = 2.1$ correct to five decimal places.	[4]	Applying	СС
B.	Solve the following differential equation by modified Euler's method $\frac{dy}{dx} = \log(x + y)$, $y(0)=1$ at $x=0.2$ and $x=0.5$ with $h=0.2$.	[8]	Applying	CC
C.	Apply Runge-Kutta method of fourth order to approximate the value of y at $x = 0.2$ correct to 4 decimal places in steps of	[8]	Applying	

	0.1 if $\frac{dy}{dx} = y^2 + x, y(0) = 1.$	ole nae	CO5
D.	Use milne's predictor corrector method and find y(0.4) given that $\frac{dy}{dx} = \frac{1}{2}(1 + x^2)y^2$ and $y(0) = 1$, $y(0.1) = 1.06$, $y(0.2) =$ [8]	Applying	CO5
	1.12, y(0.3) = 1.21.	odatarias (i) en é -	28636 74.0

hin the following which exiting and 45 the obtained marks between 40 and 45 farks: 30-40 10-50 50-60 60-70 78

f(x) < 48 100 294 000 1210 2028 Find f(x) using Lagrange's interpolation formule in polynomial of x if

Using Taylor's series, find the solution of the differentiquation, xy' = x - y, y(2) = 2 at x = 2 (context to fit

Solve the following differential equation by modified Euler's method $\frac{q_2}{dx} = \log(x + y)$, $\gamma(0) = 1$ at $x \ge 0.2$ and x = 0.5 with

toply Runge Kutta include of fourth order to approximate be value of y at $x \neq 0.2$ context to 4 decimal places in steps

5 2

09/02/23/mein/msf5-t